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Question	1:	Crystal	structure	and	X-ray	scattering	
1) (10p)	For	the	crystal	 types	 in	 the	cubic	system,	considering	a	conventional	

cubic	 cell	 of	 lattice	 constant	𝑎,	 draw	 the	 simple	 cubic	 (SC),	 body-centered	
cubic	(BCC),	and	face-centered	cubic	(FCC)	lattices.	What	are	the	respective	
sizes	of	their	primitive	cells?	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

For	a	conventional	cell	with	side	𝑎,	an	SC	crystal	contains	1,	a	BCC	crystal	contains	
2,	and	FCC	contains	4	Bravais	lattice	sites.	Therefore,	if	we	regard,	the	size	of	the	

simple	cubic	cell	as	𝑎!,	then	the	BCC	size	is	"
!

#
,	and	the	FCC	size	is	"

!

$
.	

Alternatively,	we	can	determine	the	Bravais	lattice	vectors	of	SC,	BCC,	and	FCC	and	
reach	the	same	conclusion.	

	

Simple	cubic	 Base	centered	cubic	 Face	centered	cubic	

	 	 	

c
𝑎⃗% = (100)𝑎
𝑎⃗# = (010)𝑎
𝑎⃗! = (001)𝑎

	

⎩
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1
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1
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1
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1
2l
𝑎
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1
20

1
2l 𝑎
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1
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1
20l 𝑎

	

𝑉& = 𝑎⃗% ⋅ (𝑎⃗# × 𝑎⃗!)	
= 𝑎!	

𝑉& = 𝑎⃗% ⋅ (𝑎⃗# × 𝑎⃗!)	

= 𝑎⃗% ⋅ k
1
2	
1
2 0l𝑎

#	

=
𝑎!

2 	

𝑉& = 𝑎⃗% ⋅ (𝑎⃗# × 𝑎⃗!)	

= 𝑎⃗% ⋅ k−
1
4	
1
4
1
4l 𝑎

#	

=
𝑎!

4 	

	
2) (6p)	When	observing	fruit	arrangements	below	in	an	Asian	market,	you	might	

notice	that	fruits,	such	as	oranges,	are	often	stacked	in	tetrahedrons	to	attract	
customers.	For	orange	piles	 formed	by	close	packing,	determine	the	type	of	
packing	 (AB	or	ABC)	and	the	 crystal	 structure.	Assuming	uniform	sizes	 for	
each	orange,	calculate	the	volume	fraction	of	the	packing.	
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~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

	
	

Only	 two	 ways	 to	 assemble	 a	 closing	 packing	 of	 identical	 spheres	 (oranges):	
ABC/ABC	and	AB/AB,	which	led	to	two	Bravais	lattices,	FCC	and	HCP,	respectively.	

The	exact	packing	shown	in	the	figure	is	ABC/ABC,	hence	FCC	structure,	with	the	
resultant	crystal	having	cubic	features	(the	peak	is	a	corner	of	a	cube,	cf.	page	25	
of	lecture_1_Crystal	Structure,	note,	the	ridges	are	along	the	(1,1,0),	(0,1,1),	and	
(0,1,1)	 directions,	 therefore	 the	 second	 layer	 contains	 3	 oranges,	 third	 layer	 6	
oranges).	

On	the	other	hand,	the	HCP	packing	will	give	hexagonal	crystal	features.	

Nevertheless,	no	matter	whether	you	answer	FCC	or	HCP,	you	should	reach	 the	
same	filling	factor	of	0.74	(this	is	intentional).	

	

3) (10p)	 Explain	 (qualitatively	 is	 sufficient)	 the	 evolution	 of	 x-ray	 diffraction	
lines	in	the	cubic	system	shown	below.	Why	do	the	diffraction	lines	decrease	
as	the	complexity	of	the	basis	increases	(or	symmetry	reduces)?	The	structure	
factor	 is	 given	 by	𝑆' = 	∑ 𝑓( expu−𝑖𝐺⃗ ⋅ 𝑟(y( ,	 where	𝑓( 	represents	 the	 atomic	
scattering	factor	and	the	sum	is	taken	over	all	atoms	in	the	unit	cell.	
	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

Sufficient	Answer	

With	the	increase	in	number	of	atoms	in	the	basis,	we	can	see	the	decrease	of	x-
ray	diffraction	peaks.	This	can	be	understood	in	the	following	way,	taking	SC	as	a	
model	system,	the	SC	structure	has	no	basis	atom,	therefore	Laue	spots	come	from	
all	 ℎ, 𝑘, 𝑙 	with	 integer	 increments	 of	 1,	 ℎ = 1, 2, 3,⋯ ,	 𝑘 = 1, 2, 3,⋯ ,	 𝑙 =
1, 2, 3,⋯etc.	
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Therefore,	while	the	SC	has	a	complete	ℎ# + 𝑘# + 𝑙#,	ℎ = 1, 2, 3,⋯,	𝑘 = 1, 2, 3,⋯,	
𝑙 = 1, 2, 3,⋯,	the	other	structure	with	multiple	atoms	per	basis	is	restricted	by	
𝑆' = ∑ 𝑓(( exp(𝑖𝐺⃗ ⋅ 𝑟(),	where	𝐺 = ℎ𝑏�⃗% + 𝑘𝑏�⃗ # + 𝑙𝑏�⃗ ! ,	where	𝑟( 	denote	 the	position	
of	𝑗th	atom	in	the	basis.		
The	more	basis	atom	appears,	the	more	terms	will	be	added	to	𝑆' .	Therefore,	we	
expect	 less	ℎ# + 𝑘# + 𝑙# 	values	 for	𝑥-ray	 lines,	when	we	go	down	 from	 the	 top,	
since	for	SC	cell,	the	basis	atoms	are	SC	(1),	BCC	(2),	FCC	(4),	and	Diamond	(8).	
Full	answer	(complete	as	a	reference,	but	not	recommended)	
We	 can	 consider	 the	 members	 of	 the	 cubic	 system	 as	 a	 cubic	 lattice	 with	 a	
corresponding	basis.	Thus,	in	an	SC	lattice	has	a	basis	consisting	of	one	atom	at	the	
vertex	of	the	cube;	a	BCC	lattice	–	is	a	basis	of	two	atoms:	one	at	the	vertex	and	the	
other	at	 the	body	center;	an	FCC	 lattice	 -	as	a	simple	cubic	with	a	basis	of	 four	
atoms:	one	at	the	vertex	and	three	on	the	faces	of	the	cube;	and	Diamond	-	as	two	
FCC,	 displaced	 by	 a	 quarter	 of	 the	 diagonal	 of	 the	 cube	 from	 each	 other.	 If	we	
consider	the	elemental	materials	(fi	is	the	same	for	all	atoms	in	a	basis),	then	the	
corresponding	structure	factors	and	thus	plane	visibility	are	the	following:	
	

	 SC	 BCC	 FCC	 Diamond	

Positions	of	
atoms	in	the	

basis	
(000)	

(000),	
�%
#
%
#
%
#
�.	

(000),	
�%
#
%
#
0�,	

�%
#
0 %
#
�,	

�0 %
#
%
#
�.	

(000), �%
#
%
#
0�,	

�%
#
0 %
#
� , �0 %

#
%
#
�,	

�%
$
%
$
%
$
� , �!

$
!
$
%
$
�,	

�!
$
%
$
!
$
� , �%

$
!
$
!
$
�.	

Structural	
factor	
𝑆' .	

𝑆' = 𝑓	
𝑓u1
+ 𝑒)*+(-./.0)y	

𝑓u1
+ 𝑒)*+(-./)

+ 𝑒)*+(-.0)

+ 𝑒)*+(/.0)y	

𝑓 k1 + 𝑒)*+
(-./.0)

# l	

u1 + 𝑒)*+(-./)

+ 𝑒)*+(-.0)

+ 𝑒)*+(/.0)y	

Visibility	of	
Laue	spots	

All	
possible	
ℎ, 𝑘, 𝑙	
(100)	
(110)	
(111)	
⋯	

ℎ + 𝑘 + 𝑙	
even	
(110)	
(200)	
(211)	
⋯	

ℎ, 𝑘, 𝑙	
same	kind	of	

parity	
(111)	
(200)	
(220)	
⋯	

ℎ + 𝑘 + 𝑙	 =	
4𝑛; 	2𝑛 + 1	
(210)	
(220)	
(311)	
⋯	

Position	
ℎ# + 𝑘# + 𝑙#	

1	
2	
3	
⋯	

2	
4	
6	
⋯	

3	
4	
8	
⋯	

3	
8	
11	
⋯	
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Taking	the	simplest	example,	 consider	the	difference	between	the	Simple	Cubic	
(SC)	and	Body-Centered	Cubic	(BCC)	structures.	In	the	SC	structure,	we	observe	
peaks	 corresponding	 to	 𝑥 − ray	 diffraction	 from	 crystalline	 planes,	 where	
constructive	 interference	 occurs.	 However,	 in	 the	 BCC	 structure,	 there	 exists	 a	
plane	 precisely	 positioned	 between	 the	 planes	 of	 the	 SC	 structure.	 This	
arrangement	 leads	 to	 reflected	 light	 lagging	 behind	 the	 incident	 light	 by	 λ/2,	
causing	destructive	interference.	
	
Expanding	on	 this	reasoning,	one	can	 infer	 that	as	 the	 complexity	of	 the	 lattice	
structure	 increases	or	 symmetry	 reduces	 (from	SC	 to	BCC	 to	FCC	 to	 diamond),	
interference	effects	become	more	intricate.	This	extra	complexity	of	having	more	
than	 one	 basis	 atom	 results	 in	missing	 diffraction	 lines.	 The	 reduced	 intensity	
reflects	 the	 increased	 complexity	 and	 diminished	 regularity	 of	 the	 lattice	
arrangement.	
	

	
	
Question	2:	Phonons	and	thermal	properties.	
Consider	a	linear	chain	of	N	atoms,	all	with	mass	M	and	force	constant	C.	
1) (10p)	Calculate	and	sketch	the	dispersion	relation	in	the	first	Brillouin	zone	

for	the	lattice	vibration	of	the	chain,	where	the	interatomic	distance	is	𝑎.	
	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

𝑀𝑢̈2 = 𝐶(𝑢2.% − 𝑢2	) + 𝐶(𝑢2)% − 𝑢2) = 𝐶(𝑢2.% + 𝑢2)% − 2𝑢2),	
Use	the	general	solution:	𝑢2 = 𝑢3 exp(𝑖𝑠𝑘𝑎 − 𝑖𝜔𝑡).	
𝑢2±% = 𝑢2 exp(±𝑖𝑘𝑎),	

Then,	we	can	solve	𝜔(𝑘) = �$5
6
�sin /"

#
�.	

It	is	sufficient	to	plot	𝜔(𝑘)	for	𝑘 ⊂ �− +
"
, +
"
�.	
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2) (10p)	Sketch	the	dispersion	relationship	if	the	mass	or	force	constant	changes,	
i.e.,	 if	 the	monoatomic	chain	becomes	a	diatomic	chain.	How	does	 the	𝜔(𝑘)	
relationship	evolve	with	respect	to	the	answer	in	question	1?	

	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

	
	

In	a	diatomic	chain,	there	are	two	types	of	atoms	alternately	arranged	along	the	
chain,	forming	a	repeating	unit	cell.	Each	type	of	atom	interacts	differently	with	its	
neighboring	atoms,	leading	to	a	more	complex	interaction	potential.	The	presence	
of	 the	 two	 different	masses	 or	 force	 constants	 results	 in	 the	 formation	 of	 two	
branches:	one	for	the	acoustic	phonons	(low-frequency,	long-wavelength	modes)	
and	one	for	the	optical	phonons	(high-frequency,	short-wavelength	modes).	The	
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presence	of	bandgaps	 in	the	dispersion	relation	 indicates	ranges	of	 frequencies	
where	certain	types	of	phonons	cannot	propagate	through	the	material.	

	
3) (6p)	Suppose	the	pairwise	potential	between	the	1D	monoatomic	chain	is	the	

so-called	 Lennard–Jones	 potential,	 𝑉(𝑟) = 	4𝜖 ��7
8
�
%#
– �7

8
�
9
� .	 Estimate	 the	

lattice	constant	𝑎,	binding	energy	𝐸,	and	force	constant	𝐶.	
	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

𝑉:(𝑟) = 4𝜖 �
6
𝜎 �
𝜎
𝑟�

;
–
12
𝜎 �

𝜎
𝑟�

%!

 	

The	equilibrium	position	𝑎	can	be	found	when	

𝑉:(𝑎) = 4𝜖 �
6
𝜎 �
𝜎
𝑎�

;
–
12
𝜎 �

𝜎
𝑎�

%!

  = 0	

Therefore,	

�7
"
�
;
= 2�7

"
�
%!
→	2 �7

"
�
9
= 1 → 	𝑎 = 2

"
#	𝜎.	

At	𝑎 = 2
"
#	𝜎,	𝐸 = 𝑉(𝑎) = 	−𝜖.	

	
For	the	force	constant,	we	use	Taylor	expansion	at	𝑎,	obtained	above,	
	

𝐹(𝑟) = −𝑉:(𝑟) = −
𝑑𝑉(𝑟)
𝑑𝑟 = −4𝜖 �

6
𝜎 �
𝜎
𝑟�

;
–
12
𝜎 �

𝜎
𝑟�

%!

 	

Then	the	linear	restoring	force	is	the	first	term	in	the	Taylor	expansion	around	𝑎,	
Let	the	small	deviation	from	𝑎	as	𝛿,		

𝐹(𝑎 + 𝛿) = 𝐹(𝑎) + 𝐹:(𝑎)𝛿 +
1
2! 𝐹

::(𝑎)𝛿# +⋯	

For	the	small	deviation,	we	neglect	the	square	term	∝ 𝛿#,	and	𝐹(𝑎) = 0,	

∵ 𝐹:(𝑟) = −𝑉::(𝑟) = −4𝜖 �%<9
7$
�7
8
�
%$
− $#

7$
�7
8
�
=
�,		

∴ at	𝑟 = 𝑎 = 2
%
9	𝜎	

𝑉::(𝑎) = 4𝜖 �%<9
7$
2)

"%
# − $#

7$
2)

&
#� = − $>

7$
�2)

%
!� [78 − 42] = �;#

√#!
� >
7$
.	

And	∴ 𝐹(𝑎 + 𝛿) = −�;#
√#!
� >
7$
𝛿.	

𝑐 = �;#
√#!
� >
7$
.	

	
Question	3:	Free	electrons	in	metals	
1) (10p)	Consider	a	1D	free	electron	gas	formed	in	a	mono-valent	metal	with	a	

lattice	constant	𝑎	and	a	total	length	𝐿.	Calculate	the	Fermi	energy	𝐸@ 	and	the	
electron	 density	 of	 states	𝐷(𝐸)	(hint:	 be	 aware	 of	 double	 counting	 in	 the	
states).	
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~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

1D	free	electron	gas	has	discrete	energy	states,	quantized	according	to	boundary	

conditions	as:	𝐸A =
ℏ$

#C
(#+A
D
)#,	where	𝑛 = 1,2,3,⋯.	

The	Fermi	energy	–	is	the	maximum	energy,	which	electrons	can	have	in	a	metal	
at	zero	temperature.	Due	to	the	Pauli	exclusion	principle,	each	𝑛th	energy	 level	
can	be	occupied	only	by	2	electrons.	Which	makes	the	maximum	energy	level	to	
be	occupied:	

𝐸A =
ℏ$

#C
(#+A
D
)#.	

The	density	of	states	can	be	obtained	using	the	formula:	

𝑔(𝜀)𝐿 = 𝐺(𝜀) = EF
EG
= 2 E

E/
°#/$'

(
± �EH

EG
� = �#D

+
� � C

ℏ$/
� = D

+
°�#C

ℏ$
± 𝜀)

"
$.	

	
2) (6p)	 If	 the	 transport	 of	 electrons	 is	 characterized	 by	 the	 Drude	 model,	

demonstrate	that	assuming	a	single	parameter	𝜏,	the	mean	scattering	time	is	
sufficient	to	describe	Ohm's	law.	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

In	 the	Drude	model	 of	 electrical	 conduction	 in	metals,	 electrons	 are	 treated	 as	
classical	particles	moving	through	a	lattice	of	fixed	ions.	The	model	assumes	that	
electrons	 collide	 with	 the	 lattice	 ions,	 experiencing	 scattering	 events	 that	
randomize	 their	 motion.	 In	 the	 Drude	 model,	 the	 equation	 of	 motion	 for	 an	
electron	in	an	electric	field	𝐸	is	given	by𝑚 � E

EI
+ %

J
� = −𝑒𝐸.	Where	τ	is	the	mean	

free	time	between	collisions	(mean	scattering	time).	The	current	density	can	be	
expressed	as	𝐽 = −𝑛𝑒⟨𝑣⟩,	where	𝑛	is	the	density	of	electrons.	From	the	equation	
of	 motion,	 we	 have	 〈𝑣〉 = )KJ

C
𝐸 .	 Substituting	 this	 expression	 into	 the	 current	

density	formula,	

we	get	𝐽 = 	AK$J
C

𝐸	is	the	equation	that	resembles	Ohm's	law,	𝐽 = 𝜎𝐸,	where	σ	is	the	

conductivity.	In	the	Drude	model,	the	conductivity	is	given	by	𝜎 = 	AK$J
C
.	

Note,	we	 see	 that	 assuming	 a	 single	 parameter	 τ,	 the	mean	 scattering	 time,	 is	
sufficient	 to	describe	Ohm's	 law	 in	 the	Drude	model.	The	mean	scattering	 time	
characterizes	the	average	time	between	collisions	experienced	by	electrons	in	the	
metal,	and	it	governs	the	overall	conductivity	of	the	material.	

	
3) (8p)	At	low	temperatures	far	below	the	Debye	and	Fermi	temperatures	(𝑇M	

and	𝑇@ ,	respectively),	repeated	measurements	of	specific	heat	in	a	3D	metal	
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consistently	 show	 a	 linear	 relationship	 between	 N
O
	and	 𝑇# .	 Find	 the	

contributions	 to	 the	 specific	 heat	 from	 electrons	 and	 phonons	 from	 the	
measurement	result	shown	below.	

	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

	
	

At	 low	temperatures	 far	below	the	Debye	and	Fermi	 temperatures,	 the	specific	
heat	may	be	written	as	the	sum	of	electron	and	phonon	contributions:	

𝐶 = 𝛾𝑇 + 𝐴𝑇!,	hence,	5
O
= 𝛾 + 𝐴𝑇#.	

When	5
O
	is	 plotted	 versus	𝑇# ,	 the	 intercept	 with	 y-axis	 is	 the	𝛾 ,	 the	 electronic	

contribution.	

The	slope	is	the	coefficient	𝐴,	for	phononic	contributions.			

Thus,	𝛾 = 7 × 10)$ P
QRS∙U$

	and	𝐴 = %#
%%
≈ 1.1 P

QRS∙U%
.	

	
4) (Bonus	5p)	In	1955,	R.	Peierls	showed	that	a	one-dimensional	electron	gas	of	

a	 mono-valent	 chain,	 subject	 to	 a	 crystal	 lattice,	 is	 not	 stable	 at	 low	
temperatures.	 It	 forms	 a	 new	 state,	 called	 the	 charge	density	wave	 (CDW)	
state.	 Explain	 the	 consequence	 of	 forming	 such	 a	 state	 (in	 the	 𝐸(𝑘)	
relationship	shown	below).	And	argue	why	this	state	is	preferred.	
	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

If	we	consider	a	monovalent	metal	providing	one	electron	per	primitive	cell,	the	
band	 is	 initially	 half-filled.	 Following	 a	 simple	 derivation	 (same	 as	Q3.1),	𝑁V =
#W)
W*.*	

= #∙#/-
$'
(

= #/-D
+
,	where	𝐿 = 𝑁𝑎, 𝑍	 = 	1.	Therefore,	𝑘@ =	

+FX
#F"

= +
#Y
.	
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As	 the	 electrons	 close	 to	 the	 zone	 edge,	 𝑘 = 𝑘ZX 	undergo	 Bragg	 diffraction,	
resulting	in	a	gap	opening	at	𝑘 = 𝑘ZX .	Therefore,	the	energy	gaps	introduced	by	
the	CDW	state	can	lead	to	the	formation	of	an	insulator.	Namely,	before	the	CDW	
transition,	 the	 system	 is	 a	 metal	 with	 half	 half-filled	 band.	 After	 the	 CDW	
transition,	it	has	a	filled	band,	therefore,	the	system	becomes	an	insulator.	
	
Pictorially,	the	process	can	be	shown	as,	
Before	CDW	transition	

	
	

After	CDW	transition	

+	

	
	
Question	4:	Semiconductor	and	superconductor	
1) (10p)	GaN	(Ga	is	gray)	is	a	crucial	wide-bandgap	semiconductor	used	in	white-

colored	 LEDs.	 The	 discoverers	were	 awarded	 the	Nobel	 Prize	 in	 Physics	 in	
2014.	 GaN	 crystallizes	 in	 the	Wurtzite-type	 structure	 (below),	which	 is	 the	
other	main	family	of	semiconductors	besides	the	Zinc-blend	structure.	
Determine	the	unit	cell	and	basis	of	GaN	from	the	crystal	structure.	Discuss	the	
energy	and	momenta	conservation	in	the	optical	absorption	process	of	GaN.	
Sketch	the	optical	absorption	intensity	versus	photon	energy,	considering	that	
the	gap	size	of	GaN	is	roughly	3.2	eV.	
	

𝐸[ 	CDW 
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~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

	
	

The	 Wurtzite	 structure	 belongs	 to	 the	 hexagonal	 lattice,	 composed	 of	 two	
interpenetrating	HCP-like	lattices	of	the	same	dimension.	These	identical	lattices	
of	Ga	and	N	are	further	displaced	along	the	𝑎⃗!	axis,	with	a	distance	equal	to	the	Ga-
N	bond	length.	Therefore,	the	Wurtzite	structure	can	be	constructed	by	an	HCP-
like	structure	with	a	basis	of	two	atoms.	Since	HCP	is	a	hexagonal	lattice	with	a	2-
atom	basis,	the	Wurtzite	structure	has	four	atoms	per	primitive	cell.	
	
The	experimental	absorption	spectrum	for	GaN	exhibits	an	abrupt	upturn	at	the	
onset	at	3.2	eV.	The	absorption	spectrum	is	expected	to	resemble	something	close	
to	the	dashed	line	(without	those	peaks).	

    a3 

 

 

 

 

a1             a2                    
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As	GaN	is	a	direct	band	gap	material,	the	band	diagram	indicates	that	the	transition	
occurs	at	 the	𝛤	point.	The	transition	 involves	the	momentum	of	 final	and	initial	
states,	𝑝\ = 𝑝* → 𝑝K + 𝑝- = 𝑝-& = ℎ𝑘N + ℎ𝑘] ≅ 0.	
The	energy	associated	with	the	transition	is	𝛿𝐸 = 𝐸[ = 𝐸N − 𝐸] = 3.2	eV.	
	
Note,	it’s	important	to	note	that	the	experimental	shape	may	differ	from	the	classic	
square	 root	 due	 to	 excitonic	 peaks	 at	 the	 absorption	 edge	 (resulting	 from	 the	
formation	of	excitons).	If	your	answer	has	a	clear	onset	at	3.2	eV,	it	is	more	than	
sufficient.	
	
2) (6p)	Based	on	the	change	of	magnetic	field	shown	below,	determine	for	cases	

A,	 B,	 and	 C	 which	 one	 is	 diamagnetic,	 paramagnetic,	 and	 ferromagnetic,	
respectively.	 Also,	 specify	 the	 magnitude	 and/or	 sign	 of	 𝜒 	in	 the	
magnetization.	
	

	
	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

Material	A	→ferromagnet,	B	→	diamagnet,	C	→	paramagnet.	

Since	 𝑀��⃗ = 𝜒𝐻��⃗ ,	 and	 𝐵�⃗ = 𝜇3u𝐻��⃗ + 𝑀��⃗ y = 𝜇3(1 + 𝜒)𝐻��⃗ .	 Therefore,	 para-	 or	
diamagnetic	is	compared	with	vacuum,	whether	having	the	material	A,	B,	or	C	can	
increase	or	decrease	the	magnetization	compared	with	vacuum	𝐵�⃗ = 𝜇3𝐻��⃗ .	

Therefore,	 𝜒 > 0,→	Paramagnetism	

𝜒 < 0,→	Diamagnetism.	

	 	 𝜒 = ∞,→	Ferromagnetism	
3) (8p)	 Consider	 a	 metal	 that	 demonstrates	 superconducting	 properties	 at	 a	

critical	 temperature	Tc.	What	 is	 the	Hallmark	 change	of	physical	properties	
that	characterize	the	superconducting	transition?	

	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

The	 hallmark	 change	 of	 physical	 properties	 that	 characterizes	 the	
superconducting	transition	is	the	abrupt	onset	of	zero	electrical	resistance.	Below	
a	critical	temperature	Tc,	superconductors	exhibit:	
1. Zero	resistance:	Electric	current	flows	without	resistance.	
2. Perfect	 diamagnetism:	 superconductors	 expel	 magnetic	 fields	 from	 their	

interior,	known	as	the	Meissner	effect.	
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We	can	also	accept	the	following,	
Critical	magnetic	field	𝐻N:	above	which	system	loses	superconductivity.		
Critical	current	density	𝐽N:	above	which	system	loses	superconductivity.	
Energy	 gap	 in	 the	 density	 of	 states:	 An	 energy	 gap	 in	 the	 density	 of	 states	 for	
electrons	 near	 the	 Fermi	 level,	 representing	 the	 energy	 needed	 to	 break	 apart	
Cooper	pairs.	
	
4) (Bonus	 5p)	 In	 addition	 to	 the	Hallmarks	 discussed	 in	 the	 above	 questions,	

further	 experimental	 details	 are	 presented	 below	 by	 measuring	 the	 heat	
capacity	of	a	 superconducting	state	 (𝑐2)	and	normal	 state	 (𝑐A ,	 orange).	The	
normal	state	is	obtained	by	applying	a	large	magnetic	field	that	destroys	the	
superconducting	state.	What	insights	can	we	gain	from	the	result	regarding	the	
formation	of	Cooper	pairs	by	pairing	two	𝑠 = ± %

#
	electrons?	

	

~~~~~~~~~~~~~~~~~~~~~	Answer	~~~~~~~~~~~~~~~~~~~~~~	

In	the	BCS	theory	of	superconductors,	all	electrons	form	Cooper	pairs,	constituting	
the	ground	state	of	 the	system.	To	create	a	Cooper	pair,	we	need	two	spin-half	
electrons	to	pair	in	a	way	that	total	𝑆 = 0.	
	
In	 the	BCS	 state,	 the	 superconductor	 exhibits	 a	 gap	Δ	 at	 the	Fermi	 level	 of	 the	
density	of	states	(DOS).	At	𝑇 = 0,	the	Cooper	pair	cannot	carry	normal	current	and	
heat	due	to	the	absence	of	excited	states	caused	by	Δ.	This	is	similar	to	an	intrinsic	
semiconductor	at	𝑇 = 0	where	𝑛𝑝 = 0.	As	the	temperature	increases	from	0	to	𝑇N ,	
the	system	undergoes	a	process	of	excitations	across	the	gap	Δ	to	 form	normal	
electrons,	analogous	 to	 the	 formation	of	 intrinsic	 carriers	 in	semiconductors	at	
finite	𝑇.	 In	a	BCS	superconductor,	at	𝑇 = 0,	𝑛KA = 0,	all	particles	are	𝑛K2 ,	where	
𝑛KA 	and	𝑛K2 	representing	 the	 density	 of	 "normal	 electrons"	 and	 “Cooper	 pairs”	
respectively.	 Whereas,	 at	 𝑇 = 𝑇N , 𝑛K2 = 0, 𝑛KA = 𝑛 ,	 indicating	 the	 density	 of	
carriers	in	a	normal	metal.	
	
Due	to	the	difference	in	the	excitation	process,	
For	normal	electrons,	any	temperature	dependence,	or	Fermionic	excitation	is	set	
by	the	Fermi-Dirac	distribution	for	normal	electron	→ 	 𝑐K ∝ 𝑇.	
For	BCS	superconductor,	Fermionic	excitation	over	the	gap	Δ(𝑇)	
Therefore,	we	expect	a	jump	from	𝑐A	to	𝑐2	at	𝑇N .	
	
Owing	to	the	small	𝛥(𝑇),	the	excitation	over	the	gap	is	much	easier,	resulting	in	
𝑐2 > 𝑐A.	On	the	other	hand,	when	a	sufficiently	large	magnetic	field	destroys	the	
superconductivity	gap	𝛥(𝑇),	 the	excitation	 through	 the	gap	disappears,	and	 the	
heat	capacity	follows	𝑐A	even	below	𝑇N .	


